The Payne Effect for Particle-Reinforced Elastomers

نویسنده

  • Aleksey D. Drozdov
چکیده

The study deals with the Payne effect (a substantial decrease in the storage modulus of a particle-reinforced elastomer with an increase in the amplitude of mechanical oscillations). The influence of temperature, concentration of filler and amplitude and frequency of strains is analyzed on the mechanical response of filled rubbery polymers. Constitutive equations are derived using the concept of two interpenetrating networks: one comprises semiflexible polymeric chains connected to temporary junctions, whereas the other is formed by aggregated filler clusters. Adjustable parameters are found by fitting experimental data for natural rubber, bromobutyl rubber and styrene–butadiene rubber reinforced by carbon black and polymeric particles. The critical concentration of particles is determined that characterizes transition from an ensemble of disjoint clusters to the network of filler. The volume fraction of filler corresponding to this transition is found to be close to theoretical predictions based on the percolation theory, as well as to experimental data for isolator–conductor transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Mechanical Properties of Soy Protein Filled Elastomers

Dynamic mechanical properties including temperature effect, stress softening, and Payne effect are studied on the elastomer composites filled with soy protein or carbon black. The comparison of protein composite with well-known carbon black composites provides further insight into the protein composites. The elastomers filled with soy protein aggregates give substantial reinforcement effect whe...

متن کامل

On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: I—Theory

This work presents an analytical framework for determining the overall constitutive response of elastomers that are reinforced by rigid or compliant fibers, and are subjected to finite deformations. The framework accounts for the evolution of the underlying microstructure, including particle rotation, which results from the finite changes in geometry that are induced by the applied loading. In ...

متن کامل

Multiscale modelling of particle debonding in reinforced elastomers subjected to finite deformations

Interfacial damage nucleation and evolution in reinforced elastomers subjected to finite strains is modelled using the mathematical theory of homogenization based on the asymptotic expansion of unknown variables. The microscale is characterized by a periodic unit cell, which contains particles dispersed in a blend and the particle matrix interface is characterized by a cohesive law. A novel num...

متن کامل

Finite element formulation for modeling particle debonding in reinforced elastomers subjected to finite deformations

Interfacial damage nucleation and evolution in reinforced elastomers is modeled using a three-dimensional updated Lagrangian finite element formulation based on the perturbed Petrov–Galerkin method for the treatment of nearly incompressible behavior. The progressive failure of the particle–matrix interface is modeled by a cohesive law accounting for mode mixity. The meso-scale is characterized ...

متن کامل

Some Remarks on the Effect of Interphases on the Mechanical Response and Stability of Fiber-Reinforced Elastomers

In filled elastomers, the mechanical behavior of the material surrounding the fillers -termed interphasial material-can be significantly different (softer or stiffer) from the bulk behavior of the elastomeric matrix. In this paper, motivated by recent experiments, we study the effect that such interphases can have on the mechanical response and stability of fiberreinforced elastomers at large d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000